skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Herrmann, Carmen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Herrmann, Carmen (Ed.)
    We propose an effective strategy to significantly enhance the thermoelectric power factor (PF) of a series of 2D semimetals and semiconductors by driving them towards a topological phase transition (TPT). Employing first-principles calculations with explicit consideration of electron-phonon interactions, we analyze the electronic transport properties of germanene across the TPT by applying hydrogenation and biaxial strain. We reveal that the nontrivial semimetal phase, hydrogenated germanene with 8% bi- axial strain, achieves a considerable fourfold PF enhancement, attributed to the highly asymmetric electronic structure and semimetallic nature of the nontrivial phase. We extend the strategy to another two representative 2D materials—stanene and HgSe— and observe a similar trend, with a marked sixfold and fivefold increase in PF, respectively. The wide selection of functional groups, universal applicability of biaxial strain, and broad spectrum of 2D semimetals and semiconductors render our approach highly promising for designing novel 2D materials with superior thermoelectric performance. 
    more » « less